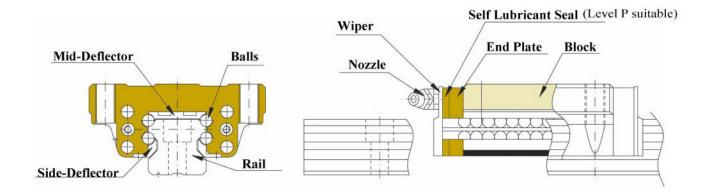
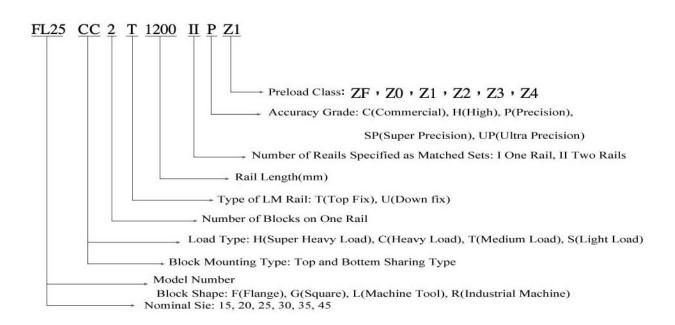


LSK LINEAR GUIDES

LSK LINEAR GUIDES

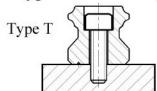

- 01 Advantages of LSK Linear Guideway
- 02 Types of LSK Linear Guideway
- 04 Mounting Procedures
- 05 Choices of Accessories
- 07 Accuracy Classification of LSK Linear Guideway
- 08 Load rating and Service Life of Linear Guideway
- 12 MTA series Flange Model FL CA, HA
- 14 MTA series Square Model GL CA, HA
- 16 INA series Flange Model FR TC, SC
- 18 INA series Square Model GR TA, SA



Advantages of LSK Linear Guideway

- Four Way Equal Load Rating
- Restrict on Quality Control
- Products are Interchangeabilities
- Smooth Makes Less Noise
- High Parallel Accuracy of Rails and Blocks
- High Precision, High Rigidity, High Efficiency
- Lower Attitude Makes Smaller
- Low Friction Maintains Accuracy to Extend Longer Lifetime of Products

LSK Nomenclature


Types of LSK Linear Guideway

LSK provides machinery and industrial types, and uses either Flanges or Square models.

1.Block Shape

Туре	Model	Shape and Direction	Height (mm)	Characteristic	Main Application	
Machinery	FL-HC FL-CC (#15~#30)		24 ∫ 60	 Ideal Four Raceway, Circular Arc Groove, Two-Point Contact Structure Large Permissible Load and High Rigidity can extend lifetime Able to be preloaded, in order 	 Machine Centers CNC Lathe Plain Grinder Heavy Cutting Machines Automation Devices 	
	GL-HA GL-CA (#15~#30)		28 ∫ 70	to achieve high rigidity and high precision under 0μ gap	· Measuring Equipment	
Industria	FR-TC FR-SC (#15~#30)		24 ∫ 48	 Smaller Compact suitable to bear load: Smooth Movement and Low Noise Standard Type: (FR-TC, GR-TA Types) Shorter Blocks, Non-Taking 	Industrial Automation Machine Semiconductor Machinery Laser Engraving Machine	
trial	GR-TA GR-SA (#15~#30)		24 ∫ 48	Space Type: (FR-SC, GR-SA Types)	Packaging MachineTransfer EquipmentEDM	

2.Rail Type

Types of LSK Linear Guideway

3.Preload Grade

Preload Grade	Marked	Preload	Accuracy Grade	Application				
Normal Gap	ZF	Gap Value 0~0.01mm	С	Industial Automation Machine				
Non Preload	ZO	0	C~UP	Transfer Equipment, Packaging Machine				
Light Preload	Z1	0.02C	C~UP	XY Axis of Ordinary Industrial Machine, Welding Machine, Fusing Machine				
Medium Preload	Z2	0.05C	H~UP	Z Axis of Ordinary Industial Machine, EDM, CNC Lathe, Percision XY Table, Measuring Equipment				
Heavy Preload	eavy Preload Z3 0.0		H~UP	Machine Centers, Grinding Machine, CNC Lathe, Milling Machine, Z axis of machine tools.				
Ultra Heavy Preload	Z4	0.13C	H~UP	Heavy Cutting Machine				

Note: The preload is the percentage of basic dynamic load rating(C)

LSK Mounting Procedures

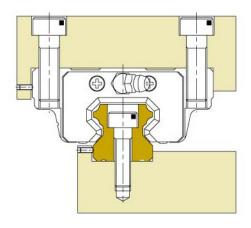
1. Shoulder Angle and Height

Installing rails, you must focus on setuping up shoulder part. When shoulder angle is too big or too over, it will make the rail less accurate or interfere the block movement. Please follow the chart below to install.

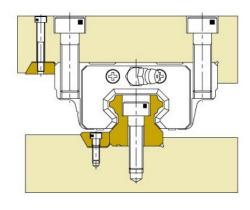
Specification	Shoulder Largest Chamfer r(mm)	Rail Shoulder Height H1(mm)	Block Shoulder Height H2(mm)	Rail Bottom Height E(mm)
15	0.3	3	4	5
20	0.3	4	5	5.5
25	0.5	5	5	7
30	0.5	5	5	8
35	0.5	6	6	9
45	1	6	6	11.5

LSK Mounting Procedures

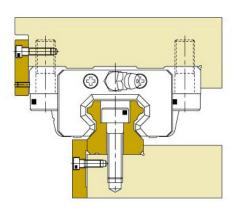
2. Torsion Rate

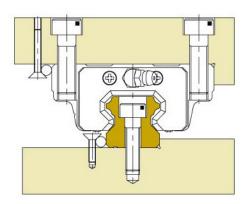

The torsion rate of installing rails.

Specification	Screw Specification	Torsion Rate
15	M4 x 0.70P x 16L	42
20	M5 x 0.80P x 16L	90
25	M6 x 1.00P x 20L	140
30,35	M8 x 1.25P x 25L	310
45	M10 x 1.5P x 25L	690


3. Mounting rails and blocks methods

The blocks and the rails may be displaced when machine is subjected to vibrations or impacts. Suggeting to follow the methods below to install. (Mounting the blocks can only imited on baseline side when usage of two parallel rails)


P1: Mounting with push screw


P2: Mounting with wedge briquetting

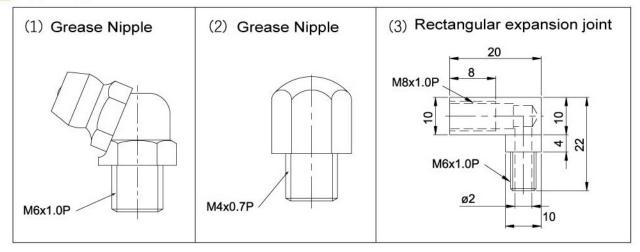
P3: Mounting with push plate

P4: Mounting with locating pin

LSK Choice of Accessories

1. Lubrication

It is necessary to provide effective lubrication. Using the product without lubrication may increase wear of the rolling elements or shorten the service life. Therefore, properly using lubrication can prevent rolling friction and corrosion, in order to extend lifetime.

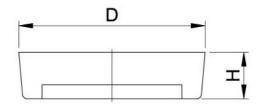

Grease

- Re-lubricated every 100km
- · Re-lubricated every 3-6 months
- · Depending on conditions and enivornment to lubricate

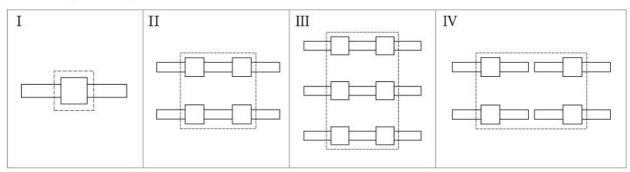
Oil

- · Initial Amount : Fulfilling whole space inside of blocks
- · Recommanding viscosity is about 30 ~ 150 cst to lubricate the guideway
- Supplying Oil: Q = n/150, Q: Oil amount expectation, N: Width of rails,
 Oil feed rate is about 0.3° cm /hr

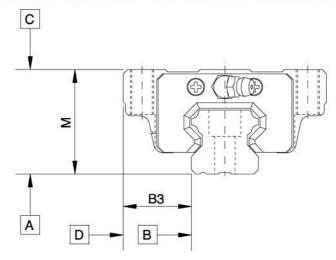
Nipple Types



LSK Choice of Accessories


Manhole Covers

The cutting powder and foreign body can fill in the holes on the rails. Which means, those can be inside of blocks as well. To prevent this phenomenon, LSK uses particular manhole covers to protect the rails.


Model Type	Screw aperture	Bolts	Main dimensions(mm)				
Woder Type	Ociew aperture	Doils	D	Н			
15	7.5	M4	7.8	1.2			
20	9.5	M5	9.8	2.2			
25	11	M6	11.4	2.5			
30/35	14	M8	14.4	3.4			
45	20	M12	20.4	4.4			

5 Guideway arrangement methods marks

Accuracy Classification of LSK Linear Guideway

Unit /mm		FL \ GL \ FR \ GR-15/20/25/30								
Inspecting Items	Normal(C)	High(H)	Precision(P)	Super Precision(SP)	Ultra Precision(UP)					
Tolerance for height M	±0.1	±0.04	0 -0.04	0 -0.02	0 -0.01					
Tolerance for distance B3	±0.1	±0.04	0 -0.04	0 -0.02	0 -0.01					
Differences in pairs Height M	0.02	0.015	0.007	0.005	0.003					
I I	0.02	0.015	0.007	0.005	0.003					
Preload Grade	ZF,Z0,Z1	Z1 Z0~Z4								
Running parallelism of surface D with surface B	S	See Accuracy Table of Running Parallelism Values for details								
Running parallelism of surface D with surface B	S	See Accuracy Table of Running Parallelism Values for details								

2. Accuracy table of Running Parallelism Values

	Accuracy Grade (µm)										
Rail Length (mm)	С	Н	Р	SP	UP						
~100	12	7	3	2	2						
100~200	14	9	4	2	2						
200~300	15	10	5	3	2						
300~500	17	12	6	3	2						
500~700	20	13	7	4	2						
700~900	22	15	8	5	3						
900~1100	24	16	9	6							
1100~1500	26	18	11	7	4						
1500~1900	28	20	13	8	4						
1900~2500	31	22	15	10	5						
2500~3100	33	25	18	11	6						
3100~3600	36	27	20	14	7						
3600~4040	37	28	21	15	7						

Load Rating and Service Life of Linear Guideway

1.Basic Load Rating

A. Basic Static Load Rating Co

If a guideway receives an excessively large load or a large impact when it is stationary or operative, permanent deformation occurs between the raceway and the rolling element. The basic static load rating (C0) refers to a static load in a given direction with a specific magnitude applied at the contact area under the most stress where the sum of permanent deformation develops between the raceway and rolling elements is 0.0001 times of the diameter of rolling ball.

B. Basic Dynamic Load Rating (C)

The basic dynamic load rating (C) indicates the load with constant direction and magnitude, under which the rated life (L) is L = 50 km for a guideway using balls, also, it used to calculate the service life.

2. Calculation of Nominal Life (L)

Without considering the conditions, the formula is shown below :

$$L = \left(\frac{C}{P}\right)^3 \cdot 50$$

L = Nominal life (km)

C = Basic dynamic load rating (N)

P = Applied load (N)

The hardness of the raceway and the temperature of the guideway unit greatly affect the service life. With these conditions considered, the practical service life calculation formulas as follows.

$$L = \left(\frac{Fh \cdot Ft \cdot Fc}{Fw} \cdot \frac{C}{Pc}\right)^{3} \cdot 50$$

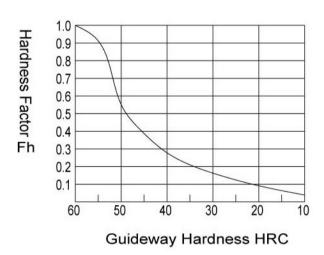
L = Nominal life (km)

C = Basic dynamic load rating (N)

Pc = Applied load (N)

Fh = Hardness factor

Ft = Temperature factor

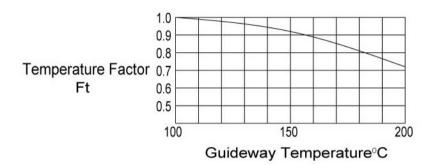

Fc = Contact factor

Fw = Load factor

1 Hardness Factor (Fh)

To maximize the load capacity of the guideway, the hardness of the raceways needs to be between 58 and 62 HRC. If the hardness is lower than this range, it will reduce load rating and lifetime of guideway.

Contact Factor (Fc)


If multiple guide blocks are closely arranged with each other, it is difficult to achieve uniform load distribution due to a moment load and the accuracy of the mounting surface. In such applications, multiply basic load ratings "C" and "C 0" by the corresponding contact factors in below:

Number of blocks used in close contact	Contact factor FC					
1	1.00					
2	0.81					
3	0.72					
4	0.66					
5	0.61					

3 Temperature Factor (Ft)

If the temperature of the environment surrounding the operating guideway exceeds 100°C, take into account the adverse effect of the high temperature and multiply the basic load ratings by the temperature factor indicated in below:

Load Factor (Fw)

It is extremely difficult to accurately determine vibrations generated during high-speed operation and impact during frequent start and stop. Therefore, where the effects of speed and vibration are estimated to be significant. Using calculated load rating times load factor below:

Vibrations/ Impact	Speed (V)	Fw
Faint	V <= 15m/min	1 ~ 1.5
Medium	15 < V <= 60m/min	1.5 ~ 2.0
Strong	V >= 60m/min	2.0 ~ 3.5

3. Applied Load

Only blocks are loaded, calculation as below:

1. Horizontal Usage

$$P=F+\frac{Co}{Mc}(F\times Lr)+\frac{Co}{Ma}\times (F\times Lp)$$

2. Transverse Usage

$$P=F+\frac{Co}{Mc}(F\times Lr)+\frac{Co}{Mb}\times (F\times Ly)$$

Mb : Allowed Yawing torque (N.m)

P : Applied Load (N) Mc : Allowed Rolling torque (N.m)

F: Downward Load(N) Lp: Distance of Pitching direction load(m)

Co : Basic Static Load Rating Ly : Distance of Yawing direction load(m)

Ma: Allowed Pitching torque (N.m) Lr: Distance of Rolling direction load(m)

via · Allowed I itelining torque (14.11)

4. Calculation of the Mean Load

When a linear guideway system receives varying loads, the service life could be calculated in consideration of varying loads of the host-system operation conditions. Calculation of Mean load as below:

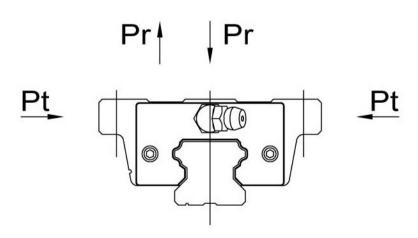
$$Pm = \sqrt[3]{\frac{1}{L} \cdot \sum_{n=1}^{n} (Pn^{3} \cdot Ln)}$$

Pm : Mean load(kgf)
Pn : Varying load(kgf)

L: Total running distance(mm)

Ln: Running distance under load Pn (mm)

5. Calculation of the Equivalent Load


The linear guideway system can take up loads and moments in all four directions those are radial load, reverse-radial load, and lateral load simultaneously. Calculating formula as below:

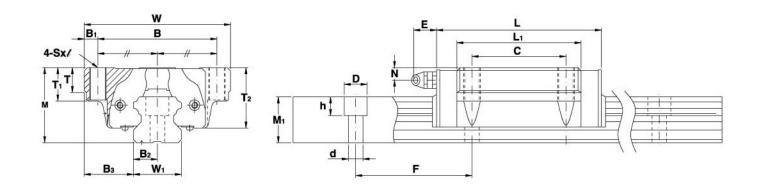
$$Pe = Pr + Pt$$

Pe = Equivalent load (kgf)

Pr = Radial or reverse-radial load (kgf)

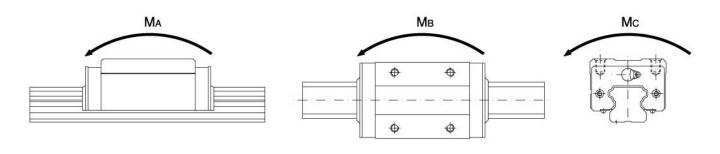
Pt = Transverse Load (kgf)

FLANGE MODEL FL-CC,HC



LSK Block Dimensions / mm

Model	Width (W)	Length (L)	Height (H)	В	B1	L1	С	Т	T ₁	T2	Sx/	N	Е	Grease Fitting
FL 15CC	47	56.2	24	38	4.5	38.2	30	7	11	19.5	M5x 7	4.5	7	M4x0.7P
FL 20CC	63	76.5	30	53	5	50.5	40	9.5	10	24.5	M6x9.5	5	12	M6x1.0P
FL 20HC	63	92.5	30	53	5	66.5	40	9.5	10	24.5	M6x9.5	5	12	M6x1.0P
FL 25CC	70	84	36	57	6.5	58	45	12	16	29.0	M8x12	6	12	M6x1.0P
FL 25HC	70	103	36	57	6.5	77	45	12	16	29.0	M8x12	6	12	M6x1.0P
FL 30CC	90	100.5	42	72	9	70.5	52	12	18	34.0	M10x12	7	12	M6x1.0P
FL 30HC	90	122.5	42	72	9	92.5	52	12	18	34.0	M10x12	7	12	M6x1.0P

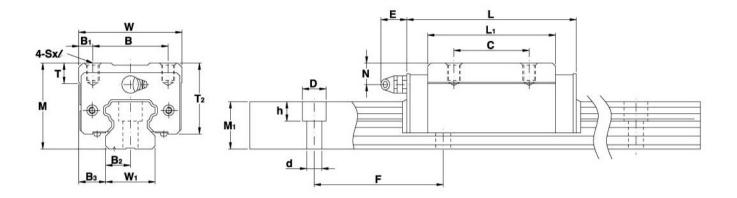


FLANGE MODEL FL-CC,HC

LSK Rail Dimensions/ mm

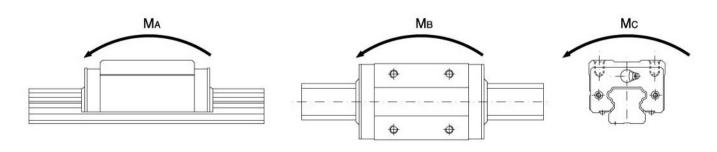
Width (W1)	Height (M1)	Pitch (F)	B ₂	Вз	dxDxh	C kgf	Co kgf	MA kgf-M	Мв kgf-M	Mc kgf-M	Block Kg/piece	Rail Kg/M
15	15	60	7.5	16	4.7x7.5x5.5	850	1380	7.3	7.3	10.1	0.2	1.7
20	18	60	10	21.5	6x9.5x8.5	1410	2430	15.9	15.9	23.7	0.35	2.5
20	18	60	10	21.5	6x9.5x8.5	2170	3240	27.5	27.5	31.6	0.47	2.5
23	22	60	11.5	23.5	7x11x9	2030	3510	27.5	27.5	40.0	0.59	3.6
23	22	60	11.5	23.5	7x11x9	2770	4680	46.8	46.8	51.8	0.75	3.6
28	26	80	14	31	9x14x12	2860	4770	43.8	43.8	65.8	1.1	5.1
28	26	80	14	31	9x14x12	3800	6370	74.4	74.4	87.7	1.3	5.1

SQUARE MODEL GL-CA,HA



LSK Block Dimensions / mm

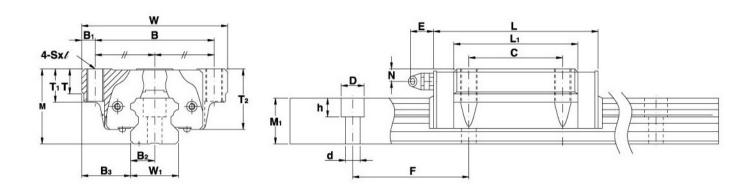
						0							
Model	Width (W)	Length (L)	Height (H)	В	B1	Lı	С	Т	T2	Sx/	N	Е	Grease Fitting
GL 15CA	34	56.2	28	26	4	38.2	26	6	23.5	M4x5	8.5	7	M4x0.7P
GL 20CA	44	76.5	30	32	6	50.5	36	8	24.5	M5x6	5	12	M6x1.0P
GL 20HA	44	92.5	30	32	6	66.5	50	8	24.5	M5x6	5	12	M6x1.0P
GL 25CA	48	84	40	35	6.5	58	35	12	33.0	M6x8	10	12	M6x1.0P
GL 25HA	48	103	40	35	6.5	77	50	12	33.0	M6x8	10	12	M6x1.0P
GL 30CA	60	100.5	45	40	10	70.5	40	12	37.0	M8x10	10	12	M6x1.0P
GL 30HA	60	122.5	45	40	10	92.5	60	12	37.0	M8x10	10	12	M6x1.0P



SQUARE MODEL GL-CA,HA

LSK Rail Dimensions/ mm

Width (W1)	Height (M1)	Pitch (F)	B ₂	Вз	dxDxh	C kgf	Co kgf	Ma kgf-M	Мв kgf-M	Mc kgf-M	Block Kg/piece	Rail Kg/M
15	15	60	7.5	9.5	4.7x7.5x5.5	850	1380	7.3	7.3	10.1	0.18	1.7
20	18	60	10	12	6x9.5x8.5	1410	2430	15.9	15.9	23.7	0.25	2.5
20	18	60	10	12	6x9.5x8.5	2170	3240	27.5	27.5	31.6	0.35	2.5
23	22	60	11.5	12.5	7x11x9	2030	3510	27.5	27.5	40.0	0.54	3.6
23	22	60	11.5	12.5	7x11x9	2770	4680	46.8	46.8	51.8	0.67	3.6
28	26	80	14	16	9x14x12	2860	4770	43.8	43.8	65.8	0.9	5.1
28	26	80	14	16	9x14x12	3800	6370	74.4	74.4	87.7	1.1	5.1


FLANGE MODEL FR-TC,SC

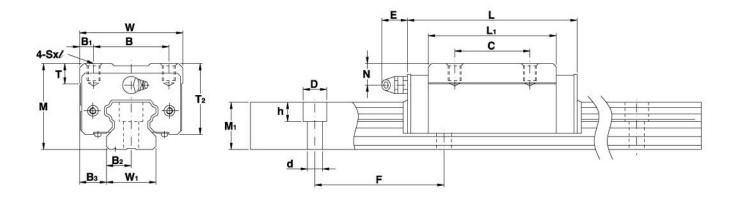
LSK Block Dimensions / mm

Model	Width (W)	Length (L)	Height (H)	В	Bı	L1	С	Т	T1	T2	Sx/	N	E	Grease Fitting
FR 15TC	52	56.2	24	41	5.5	38.2	26	7	11	19.5	M5x 7	4	7	M4x0.7P
FR 15SC	52	39.3	24	41	5.5	21.3	-	7	11	19.5	M5x 7	4	7	M4x0.7P
FR 20TC	59	67.2	28	49	5	47.2	32	9.5	10	22	M6x9.5	4	12	M6x1.0P
FR 20SC	59	47.5	28	49	5	27.5	_	9.5	10	22	M6x9.5	4	12	M6x1.0P

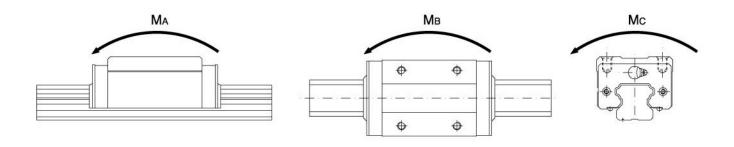
FLANGE MODEL FR-TC,SC

LSK Rail Dimensions/ mm

Width (W1)	Height (M1)	Pitch (F)	B ₂	Вз	dxDxh	C kgf	Co kgf	Ma kgf-M	Мв kgf-M	Mc kgf-M	Block Kg/piece	Rail Kg/M
15	15	60	7.5	18.5	4.7 x7.5x5.5	850	1380	7.3	7.3	10.1	0.2	1.7
15	15	60	7.5	18.5	4.7 x7.5x5.5	550	1132	2.04	2.04	4.08	0.15	1.7
20	18	60	10	19.5	6x9.5x8.5	1410	2430	15.9	15.9	23.7	0.42	2.5
20	18	60	10	19.5	6x9.5x8.5	730	1468	3.06	2.04	7.14	0.35	2.5


SQUARE MODEL GR-TA,SA

LSK Block Dimensions / mm


Model	Width (W)	Length (L)	Height (H)	В	B ₁	Lı	С	T	T2	Sx/	N	E	Grease Fitting
GR 15TA	34	56.2	24	26	4	38.2	26	6	19.5	M4x5	4	7	M4x0.7P
GR 15SA	34	39.5	24	26	4	21.3	_	6	19.5	M4x5	4	7	M4x0.7P
GR 20TA	42	67.2	28	32	5	47.2	32	7.5	22	M5x6	4	12	M6x1.0P
GR 20SA	42	47.5	28	32	5	27.5	_	7.5	22	M5x6	4	12	M6x1.0P
GR 25TA	48	79.5	33	35	6.5	59.5	35	8	26	M6x8	4.5	12	M6x1.0P
GR 25SA	48	55.0	33	35	6.5	35.0	_	8	26	M6x8	4.5	12	M6x1.0P

SQUARE MODEL GR-TA,SA

LSK Rail Dimensions/ mm

Width (W1)	Height (M1)	Pitch (F)	B ₂	Вз	dxDxh	C kgf	Co kgf	Ma kgf-M	Мв kgf-M	Mc kgf-M	Block Kg/piece	Rail Kg/M
15	15	60	7.5	9.5	4.7x7.5x5.5	850	1380	7.3	7.3	10.1	0.18	1.7
15	15	60	7.5	9.5	4.7x7.5x5.5	550	1132	2.04	2.04	4.08	0.11	1.7
20	18	60	10	11	6x9.5x8.5	1410	2430	15.9	15.9	23.7	0.25	2.5
20	18	60	10	11	6x9.5x8.5	730	1468	3.06	2.04	7.14	0.23	2.5
23	22	60	11.5	12.5	7x11x9	2030	3510	27.5	27.5	40.0	0.54	3.6
23	22	60	11.5	12.5	7x11x9	1190	2295	5.1	4.08	12.24	0.45	3.6

